КНФ
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов.Любая булева формула может быть приведена к КНФ.
Формулы в КНФ:
Формулы не в КНФ:
Но эти 3 формулы не в КНФ эквивалентны следующим формулам в КНФ:
Алгоритм построения КНФ
1) Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием. Это можно сделать, используя равносильные формулы:
2) Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям на основании формул:
3) Избавиться от знаков двойного отрицания.
4) Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.
Пример построения КНФ
Приведем к КНФ формулу
Преобразуем формулу F к формуле не содержащей → :
В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:
По закону дистрибутивности получим КНФ:
СКНФ
Соверше́нная конъюнкти́вная норма́льная фо́рма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных дизъюнкций
- в каждой дизъюнкции нет одинаковых пропозициональных переменных
- каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.
Для того, чтобы получить СКНФ функции, требуется составить её таблицу истинности. Возьмем таблицу истинности для 4 четырех переменных:
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 |
В ячейках строки́ отмечаются лишь те комбинации, которые приводят логическое выражение в состояние нуля.
Четвёртая строка содержит 0 в указанном поле. Отмечаются значения всех четырёх переменных, это:
В дизъюнкцию записывается переменная без инверсии, если она в наборе равна 0, и с инверсией, если она равна 1. Первый член СКНФ рассматриваемой функции выглядит так:
Остальные члены СКНФ составляются по аналогии.
Комментариев нет:
Отправить комментарий